题目内容

【题目】如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 cm,且tan∠EFC= ,那么矩形ABCD的周长为cm.

【答案】36
【解析】解:∵tan∠EFC=

∴设CE=3k,则CF=4k,

由勾股定理得EF=DE=5k,

∴DC=AB=8k,

∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,

∴∠BAF=∠EFC,

∴tan∠BAF=tan∠EFC=

∴BF=6k,AF=BC=AD=10k,

在Rt△AFE中由勾股定理得AE= = =5

解得:k=1,

故矩形ABCD的周长=2(AB+BC)=2(8k+10k)=36cm,

所以答案是:36.

【考点精析】通过灵活运用勾股定理的概念和矩形的性质,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;矩形的四个角都是直角,矩形的对角线相等即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网