题目内容
【题目】E、F、M、N分别是正方形ABCD四条边上的点,AE=BF=CM=DN,四边形EFMN是什么图形?证明你的结论.
【答案】四边形EFMN是正方形.
【解析】
应该是正方形.可通过证明三角形AEN,DNM,MCF,FBE全等,先得出四边形ENMF是菱形,再证明四边形EFMN中一个内角为90°,从而得出四边形EFMN是正方形的结论.
解:四边形EFMN是正方形.
证明:∵AE=BF=CM=DN,
∴AN=DM=CF=BE.
∵∠A=∠B=∠C=∠D=90°,
∴△AEN≌△DMN≌△CFM≌△BEF.
∴EF=EN=NM=MF,∠ENA=∠DMN.
∴四边形EFMN是菱形.
∵∠ENA=∠DMN,∠DMN+∠DNM=90°,
∴∠ENA+∠DNM=90°.
∴∠ENM=90°.
∴四边形EFMN是正方形.
练习册系列答案
相关题目