题目内容
【题目】如图,边长为6的正方形中,分别是上的点,,为垂足.
(1)如图①, AF=BF,AE=2,点T是射线PF上的一个动点,则当△ABT为直角三角形时,求AT的长;
(2)如图②,若,连接,求证:.
【答案】(1) 3或3或3;(2)见解析.
【解析】分析:(1)解Rt△BAE,由tan∠ABE==,得出∠ABE=30°.然后分三种情况进行讨论:①当点T在AB的上方,∠ATB=90°时,显然点T和点P重合,易求AT=AP=AB=3;②当点T在AB的下方,∠ATB=90°时,根据直角三角形斜边上的中线等于斜边的一半可得TF=BF=AF=3,而∠BFT=60°,那么 △FTB是等边三角形,TB=3,再根据勾股定理求出AT==3;
③当点T在AB的下方,∠ABT=90°时.在Rt△ATB中利用勾股定理求出AT;
(2)先证明∠1=∠3=∠4,由tan∠1=,tan∠3=,得出=,等量代换得到=.再证明△PBC∽△PAF,得出∠5=∠6,进而可得∠5+∠7=90°,即∠CPF=90°,那么CP⊥FP.
详解:(1)在正方形ABCD中,可得∠DAB=90°.
∵在Rt△BAE中,tan∠ABE===,∴∠ABE=30°.
点T是射线PF上的一个动点,当△ABT为直角三角形时,分三种情况:
①当点T在AB的上方,∠ATB=90°,显然此时点T和点P重合,即AT=AP=AB=3;
②当点T在AB的下方,∠ATB=90°,如图①所示.
在Rt△APB中,由AF=BF,可得:AF=BF=PF=3,∴∠BPF=∠FBP=30°,∴∠BFT=60°.
在Rt△ATB中,TF=BF=AF=3,∴△FTB是等边三角形,∴TB=3,AT==3;
③当点T在AB的下方,∠ABT=90°时,如图②所示.
在Rt△FBT中,∠BFT=60°,BF=3,BT=BFtan60°=3.
在Rt△ATB中:AT==3.
综上所述:当△ABT为直角三角形时,AT的长为3或3或3;
(2)如图③所示.
∵四边形ABCD是正方形,∴AB=AD=BC,AD∥BC,∠DAB=90°,∴∠3=∠4.
∵在Rt△EAB中,AP⊥BE,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,∴∠1=∠3=∠4.
∵tan∠1=,tan∠3==.
∵AE=AF,AB=BC,∴=.
在△PBC和△PAF中,∵,∠4=∠1,∴△PBC∽△PAF,∴∠5=∠6.
∵∠6+∠7=90/span>°,∴∠5+∠7=90°,即∠CPF=90°,∴CP⊥FP.