题目内容
【题目】如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.
(1)求作∠ABC的平分线,分别交AD,AC于P,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)
(2)证明AP=AQ.
【答案】(1)作图见解析;(2)证明见解析.
【解析】分析:(1)根据角平分线的性质作出BQ即可;
(2)先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.
详解:(1)如图所示,BQ为所求作
(2)∵BQ平分∠ABC ∴∠ABQ=∠CBQ
在△ABQ中,∠BAC=90°
∴∠AQP+∠ABQ=90°
∵AD⊥BC ∴∠ADB=90°
∴在Rt△BDP中,∠CBQ+∠BPD=90°
∵∠ABQ=∠CBQ ∴∠AQP=∠BPD
又∵∠BPD=∠APQ
∴∠AQP=∠AQP ∴AP=AQ
练习册系列答案
相关题目