题目内容
【题目】如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若AC=4cm,求DE的长;
(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;
(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.
【答案】(1)DE=6;(2) DE=,理由见解析;(3)∠DOE=∠AOB,理由见解析
【解析】试题分析:(1)由AC=4cm,AB=12cm,即可推出BC=8cm,然后根据点D、E分别是AC和BC的中点,即可推出AD=DC=2cm,BE=EC=4cm,即可推出DE的长度,
(2)设AC=acm,然后通过点D、E分别是AC和BC的中点,即可推出DE=(AC+BC)=AB=cm,即可推出结论,
(3)分两种情况,OC在∠AOB内部和外部结果都是∠DOE=∠AOB
试题解析:
(1))∵AB=12cm,
∴AC=4cm,
∴BC=8cm,
∵点D、E分别是AC和BC的中点,
∴CD=2cm,CE=4cm,
∴DE=6cm;
(2) 设AC=acm,
∵点D、E分别是AC和BC的中点,
∴DE=CD+CE=(AC+BC)=AB=6cm,
∴不论AC取何值(不超过12cm),DE的长不变;
(3)①当OC在∠AOB内部时,如图所示:
∵OM平分∠AOC,ON平分∠BOC,
∴∠NOC= ∠BOC,∠COM=∠COA.
∵∠CON+∠COM=∠MON,
∴∠MON=(∠BOC+∠AOC)=α;
②当OC在∠AOB外部时,如图所示:
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=(∠AOB+∠BOC),∠CON=∠BOC.
∵∠MON+∠CON=∠MOC,
∴∠MON=∠MOC-∠CON=(AOB+∠BOC)-∠BOC=∠AOB=α.
【题目】已知某水库的正常水位是25m,下表是该水库9月第一周的水位记录情况(高于正常水位记为正,低于正常水位记为负).
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位变化 |
(1)本周三的水位是多少米?
(2)本周的最高水位、最低水位分别出现在哪一天,分别是多少米?