题目内容

已知,如图1,正方形ABCD和正方形BEFG,三点A、B、E在同一直线上,连接AG和CE,
(1)判定线段AG和线段CE的数量有什么关系?请说明理由.
(2)将正方形BEFG,绕点顺时针旋转到图2的位置时,(1)中的结论是否成立?请说明理由.
(3)若在图2中连接AE和CG,且AE=2CG=4,求正方形ABCD和正方形BEFG的面积之和为______.(直接写出结果).
(1)AG=CE.
理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABG=∠CBE=90°,
在△ABG和△CBE中,
AB=CB
∠ABG=∠CBE=90°
BG=BE

∴△ABG≌△CBE(SAS),
∴AG=CE;

(2)AG=CE仍然成立.
理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABC=∠EBG=90°,
∵∠ABG=∠ABC+∠CBG,
∠CBE=∠EBG+∠CBG,
∴∠ABG=∠CBE,
在△ABG和△CBE中,
AB=CB
∠ABG=∠CBE
BG=BE

∴△ABG≌△CBE(SAS),
∴AG=CE;

(3)如图2,连接AC、EG,设AG、CE交点为H,
∵△ABG≌△CBE,
∴∠BAG=∠BCE,
∴∠CAH+∠ACH=∠CAH+∠ACB+∠BCE
=∠CAH+∠ACB+∠BAG=90°,
∴AG⊥CE,
在Rt△CGH中,CG2=CH2+GH2
在Rt△AEH中,AE2=AH2+EH2
∴CG2+AE2=CH2+GH2+AH2+EH2=(CH2+AH2)+(GH2+EH2)=AC2+EG2
∵AE=2CG=4,
∴CG=2,
∴AC2+EG2=22+42=20,
∴正方形ABCD和正方形BEFG的面积之和为
1
2
×20=10.
故答案为:10.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网