题目内容

【题目】在平面直角坐标系xOy中,已知点A(0,2),直线OP位于一、三象限,∠AOP=45°(如图1),设点A关于直线OP的对称点为B.
(1)写出点B的坐标;
(2)过原点O的直线l从OP的位置开始,绕原点O顺时针旋转. ①如图1,当直线l顺时针旋转10°到l1的位置时,点A关于直线l1的对称点为C,则∠BOC的度数是 , 线段OC的长为
②如图2,当直线l顺时针旋转55°到l2的位置时,点A关于直线l2的对称点为D,则∠BOD的度数是
③直线l顺时针旋转n°(0<n≤90),在这个运动过程中,点A关于直线l的对称点所经过的路径长为(用含n的代数式表示).

【答案】
(1)解:如图

A关于直线OP的对称点正好落在x轴上,

∵根据轴对称性质∴得出OA=OB=2,

∴B点的坐标是(2,0)


(2)20°;2;110°;
【解析】(2)解: ①如图1,过A作AZ⊥直线l1于Z,延长AZ到C,使AZ=ZC,则C为A关于直线l1的对称点,
∵根据轴对称性质得出OA=OC=2,
∴∠AOZ=∠COZ=45°+10°=55°,
∴∠BOC=55°+55°﹣90°=20°,
所以答案是:20°,2;
②解:如图2,过A作AM⊥直线l2于M,延长AM到D,使AM=MD,则D为A关于直线l2的对称点,
∵根据轴对称性质得出OA=OD,
∴∠AOM=∠DOM=180°﹣(45°+55°)=80°,
80°+80°﹣90°=70°,
∴∠BOD=180°﹣70°=110°,
所以答案是:110°;
③解:直线l顺时针旋转n°(0<n≤90),在这个运动过程中,点A关于直线l的对称点所经过的路径为以O为圆心,以2为半径的弧BQ(Q为A关于旋转n°后直线l1的对称点),
圆心角∠BOQ=2(45°+n°)﹣90°=2n°,
由弧长公式得: =
所以答案是:
【考点精析】利用弧长计算公式和旋转的性质对题目进行判断即可得到答案,需要熟知若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网