题目内容

【题目】如图,已知抛物线y= x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

【答案】
(1)

解:∵点A(0,1).B(﹣9,10)在抛物线上,

∴抛物线的解析式为y= x2+2x+1


(2)

解:∵AC∥x轴,A(0,1)

x2+2x+1=1,

∴x1=6,x2=0,

∴点C的坐标(﹣6,1),

∵点A(0,1).B(﹣9,10),

∴直线AB的解析式为y=﹣x+1,

设点P(m, m2+2m+1)

∴E(m,﹣m+1)

∴PE=﹣m+1﹣( m2+2m+1)=﹣ m2﹣3m,

∵AC⊥EP,AC=6,

∴S四边形AECP

=SAEC+SAPC

= AC×EF+ AC×PF

= AC×(EF+PF)

= AC×PE

= ×6×(﹣ m2﹣3m)

=﹣m2﹣9m

=﹣(m+ 2+

∵﹣6<m<0

∴当m=﹣ 时,四边形AECP的面积的最大值是

此时点P(﹣ ,﹣ ).


(3)

解:∵y= x2+2x+1= (x+3)2﹣2,

∴P(﹣3,﹣2),

∴PF=yF﹣yP=3,CF=xF﹣xC=3,

∴PF=CF,

∴∠PCF=45°

同理可得:∠EAF=45°,

∴∠PCF=∠EAF,

∴在直线AC上存在满足条件的Q,

设Q(t,1)且AB=9 ,AC=6,CP=3

∵以C、P、Q为顶点的三角形与△ABC相似,

①当△CPQ∽△ABC时,

∴t=﹣4,

∴Q(﹣4,1)

②当△CQP∽△ABC时,

∴t=3,

∴Q(3,1).


【解析】(1)用待定系数法求出抛物线解析式即可;
(2)设点P(m, m2+2m+1),表示出PE=﹣ m2﹣3m,再用S四边形AECP=SAEC+SAPC= AC×PE,建立函数关系式,求出极值即可;
(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网