搜索
题目内容
若矩形ABCD的对角线长为10,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长是
.
试题答案
相关练习册答案
20
试题分析:∵矩形ABCD的对角线长为10,
∴AC=BD=10。
∵点E、F、G、H分别是AB、BC、CD、DA的中点,
∴EF=HG=
AC=
×10=5,EH=GF=
BD=
×10=5。
∴四边形EFGH的周长为EF+FG+GH+HE=5+5+5+5=20。
练习册系列答案
自主创新作业系列答案
认知规律训练法系列答案
钟书金牌期末冲刺100分系列答案
重难点突破训练系列答案
万唯中考预测卷系列答案
初中英语听力课堂系列答案
周测月考单元评价卷系列答案
中学生英语随堂演练及单元要点检测题系列答案
中学单元测试卷系列答案
中领航深度衔接时效卷系列答案
相关题目
如图,在四边形ABCD中,DC∥AB,BD平分∠ADC,∠ADC=60°,过点B作BE⊥DC,过点A作AF⊥BD,垂足分别为E、F,连接EF判断△BEF的形状,并说明理由
如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若
,则
(用含k的代数式表示).
如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.
求证:四边形ABCD是菱形.
如图,等腰梯形ABCD中,AD∥BC,DE⊥BC,BD⊥DC,垂足分别为E,D,DE=3,BD=5,则腰长AB=
.
如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.
如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25
0
,则∠2=
.
下列说法中,正确的是【 】
A.同位角相等
B.对角线相等的四边形是平行四边形
C.四条边相等的四边形是菱形
D.矩形的对角线一定互相垂直
如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总