题目内容
【题目】探究:如图,直线 AB、BC、AC 两两相交,交点分别为点 A、B、C,点 D 在线段 AB 上,过点 D 作 DE∥BC 交 AC 于点 E,过点 E 作 EF∥AB 交 BC 于点 F.若∠ABC=40°,求∠DEF 的度数. 请将下面的解答过程补充完整,并填空(理由或数学式)
解:∵DE∥BC,( )
∴∠DEF= .( )
∵EF∥AB,
∴ =∠ABC.( )
∴∠DEF=∠ABC.( )
∵∠ABC=40°,
∴∠DEF= °.
【答案】见解析
【解析】
依据两直线平行,内错角相等;两直线平行,同位角相等,即可得到∠DEF=40°.
解:∵DE∥BC,(已知)
∴∠DEF=∠EFC.(两直线平行,内错角相等)
∵EF∥AB,
∴∠EFC=∠ABC.(两直线平行,同位角相等)
∴∠DEF=∠ABC.(等量代换)
∵∠ABC=40°,
∴∠DEF=40°.
练习册系列答案
相关题目