题目内容
【题目】如图,在ABCD中,BE交对角线AC于点E,DF∥BE交AC于点F.
(1)写出图中所有的全等三角形(不得添加辅助线);
(2)求证:BE=DF.
【答案】
(1)解:全等三角形有:△ABE≌△CDF,△AFD≌△CEB,△ABC≌△CDA,
理由是:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵AC=AC,
∴△ABC≌△CDA(SSS);
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAF=∠BCE,
∵DF∥BE,
∴∠AFD=∠CEB,
即∠AFD=∠CEB,∠DAF=∠BCE,AD=BC,
∴△AFD≌△CEB(AAS);
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,
∵DF∥BE,
∴∠AFD=∠CEB,
∴∠AEB=∠DFC(等角的补角相等),
即∠BAE=∠DCF,∠AEB=∠CFD,AB=CD,
∴△ABE≌△CDF;
(2)证明:∵由(1)知:△AFD≌△CEB,
∴BE=DF.
【解析】(1)根据平行四边形性质推出AD=BC,AB=CD,根据SSS证出△ABC≌△CDA即可;根据平行线性质推出∠AFD=∠CEB,∠DAF=∠BCE,根据AAS证出△AFD≌△CEB即可;求出∠AEB=∠DFC,∠BAE=∠DCF,根据AAS证出△ABE≌△CDF即可;(2)由△AFD≌△CEB推出即可.
【考点精析】关于本题考查的平行线的性质和平行四边形的性质,需要了解两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能得出正确答案.
练习册系列答案
相关题目