题目内容
【题目】如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是_____.
【答案】50°
【解析】
试题连结OB,根据角平分线定义得到∠OAB=∠ABO=25°,再根据等腰三角形的性质得到∠ABC=∠ACB=65°,再根据线段垂直平分线的性质得到OA=OB,则∠OBA=∠OAB=25°,所以∠1=65°﹣25°=40°,由于AB=AC,OA平分∠BAC,根据等腰三角形的性质得OA垂直平分BC,则BO=OC,所以∠1=∠2=40°,然后根据折叠的性质得到EO=EC,于是∠2=∠3=40°,再根据三角形内角和定理计算∠OEC.
解:连结OB,
∵∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,
∴∠OAB=∠ABO=25°,
∵AB=AC,∠BAC=50°,
∴∠ABC=∠ACB=65°,
∵OD垂直平分AB,
∴OA=OB,
∴∠OBA=∠OAB=25°,
∴∠1=65°﹣25°=40°,
∵AB=AC,OA平分∠BAC,
∴OA垂直平分BC,
∴BO=OC,
∴∠1=∠2=40°,
∵点C沿EF折叠后与点O重合,
∴EO=EC,
∴∠2=∠3=40°,
∴∠OEC=180°﹣40°﹣40°=100°.
故答案为100°.
【题目】6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图: 根据以上提供的信息解答下列问题:
(1)把一班竞赛成绩统计图补充完整;
(2)写出下表中a、b、c的值:
平均数(分) | 中位数(分) | 众数(分) | |
一班 | a | b | 90 |
二班 | 87.6 | 80 | c |
(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析: ①从平均数和中位数方面比较一班和二班的成绩;②从平均数和众数方面比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.