题目内容
【题目】如图,直线OD与x轴所夹的锐角为30°,OA1的长为2,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均为等边三边形,点A1、A2、A3…An﹣1在x轴正半轴上依次排列,点B1、B2、B3…Bn在直线OD上依次排列,那么点B2的坐标为____,点Bn的坐标为____.
【答案】(3,)(3×2n﹣2,×2n﹣2)
【解析】
根据等边三角形的性质和∠B1OA2=30°,可求得∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OAn=2n﹣1,再求出△AnBnAn+1的边长,进一步可求得点Bn的坐标.
∵△A1B1A2为等边三角形,∴∠B1A1A2=60°.
∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得:OA2=2OA1=2,同理可求得:OAn=2n﹣1.
∵∠BnOAn+1=30°,∠BnAnAn+1=60°,∴∠BnOAn+1=∠OBnAn=30°,∴BnAn=OAn=2n﹣1,即△AnBnAn+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点Bn的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点Bn的坐标为(3×2n﹣2,×2n﹣2),点B2的坐标为(3,).
故答案为:(3,);(3×2n﹣2,×2n﹣2).
练习册系列答案
相关题目