题目内容

【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;

(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.

【答案】
(1)解:①∵四边形ABCD是矩形,

∴AD∥BC,

∴∠CAD=∠ACB,∠AEF=∠CFE,

∵EF垂直平分AC,垂足为O,

∴OA=OC,

∴△AOE≌△COF,

∴OE=OF,

∴四边形AFCE为平行四边形,

又∵EF⊥AC,

∴四边形AFCE为菱形,

②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,

在Rt△ABF中,AB=4cm,

由勾股定理得42+(8﹣x)2=x2

解得x=5,

∴AF=5cm


(2)解:①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;

同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形.

因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,

∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,

∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,

∴PC=5t,QA=CD+AD﹣4t=12﹣4t,即QA=12﹣4t,

∴5t=12﹣4t,

解得

∴以A、C、P、Q四点为顶点的四边形是平行四边形时, 秒.

②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上.

分三种情况:

i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12﹣b,得a+b=12;

ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12﹣b=a,得a+b=12;

iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12﹣a=b,得a+b=12.

综上所述,a与b满足的数量关系式是a+b=12(ab≠0)


【解析】(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求得AF的长;(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;②分三种情况讨论可知a与b满足的数量关系式.
【考点精析】认真审题,首先需要了解线段垂直平分线的性质(垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网