题目内容
【题目】如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3 米,坡顶有旗杆BC , 旗杆顶端B点与A点有一条彩带相连 . 若AB=10米,则旗杆BC的高度为( )
A.5米
B.6米
C.8米
D.(3+ )米
【答案】A
【解析】设CD=x , 则AD=2x ,
由勾股定理可得,AC=
∵AC=3 米,
∴ x=3 ,
∴x=3米,
∴CD=3米,
∴AD=2×3=6米,
在Rt△ABD中,BD= =8米,
∴BC=8-3=5米 .
故选A.
【考点精析】解答此题的关键在于理解关于坡度坡角问题的相关知识,掌握坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA.
练习册系列答案
相关题目