题目内容
【题目】如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO:S△BCO:S△CAO等于 .
【答案】2:3:4
【解析】解:
过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,
∵O是三角形三条角平分线的交点,
∴OD=OE=OF,
∵AB=20,BC=30,AC=40,
∴S△ABO:S△BCO:S△CAO=2:3:4.
所以答案是:2:3:4.
【考点精析】根据题目的已知条件,利用三角形的面积和角平分线的性质定理的相关知识可以得到问题的答案,需要掌握三角形的面积=1/2×底×高;定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上.
练习册系列答案
相关题目