题目内容
【题目】已知二次函数f(x)=ax2+bx+c和一次函数g(x)=﹣bx,其中a、b、c,满足a>b>c,a+b+c=0.
(1)求证:这两个函数的图象交于不同的两点;
(2)设这两个函数的图象交于A,B两点,作AA1⊥x轴于A1,BB1⊥x轴于B1,求线段A1B1的长的取值范围.
【答案】(1)见解析;(2)<A1B1<2.
【解析】
(1)把两个函数联立成方程组,转化为解一元二次方程,用根的判别式求解即可;
(2)A1B12=(x1﹣x2)2=(x1+x2)2﹣4x1x2,用根与系数的关系转化为含a、b、c的式子,再配方求解.
(1)证明:联立方程得:ax2+2bx+c=0,
△=4(b2-ac),
∵a>b>c,a+b+c=0,
∴a>0,c<0,
∴ac<0,
∴△>0,
∴两函数的图象相交于不同的两点;
(2)解:设方程ax2+2bx+c=0的两根为x1,x2,则
A1B12=(x1﹣x2)2=(x1+x2)2﹣4x1x2,
=(﹣)2﹣==,
=4[()2++1],
=4[()2+],
∵a>b>c,a+b+c=0,
∴b=﹣(a+c),
∴a>﹣(a+c)>c,a>0,
∴﹣2<<﹣,
此时3<A1B12<12,
∴<A1B1<2.
【题目】某商店销售一种商品,经市场调査发现,该商品的周销售量y(件)是售价x(元/件)的一次函数.其售价、周销售量、周销售利润w(元)的三组对应值如表:
售价x(元/件) | 50 | 60 | 80 |
周销售量y(件) | 100 | 80 | 40 |
周销售利润w(元) | 1000 | 1600 | 1600 |
注:周销售利润=周销售量×(售价﹣进价)
(1)求y关于x的函数解析式_____;
(2)当售价是_____元/件时,周销售利润最大.
【题目】(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 | 频数 | 频率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合计 | ■ | 1 |
(1)写出a,b,c的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.