题目内容
【题目】如图,在四边形ABCD中,AB∥CD,AD∥BC,AC,BD相交于O,则图中能够全等的三角形共有( )对.
A.4B.3C.2D.1
【答案】A
【解析】
由平行得到角相等,加上公共边可以得到△ABD≌△CDB,从而得出AB=CD,AD=BC“对顶角相等”就很容易找到全等的三角形:△ACD≌△CAB(SSS),△ABD≌△CDB(SSS),△AOD≌△COB(SAS),△AOB≌△COD(SAS).
解:∵AB∥CD,AD∥BC,
∠ABD=∠CDB,∠ADB=∠CBD,
又BD=DB,
∴△ABD≌△CDB,①
∴AB=CD,AD=BC;
∴△AOD≌△COB(SAS);②
同理可得:△AOB≌△COD(SAS);③
同理可得:△ACD≌△CAB(SSS).④
因此本题共有4对全等三角形.
故选:A.
练习册系列答案
相关题目
【题目】问题探究:小刚根据学习函数的经验,对函数y=﹣2|x|+5的图象和性质进行了探究.下面是小刚的探究过程,请你解决相关问题:
(Ⅰ)在函数y=﹣2|x|+5中,自变量x可以是任意实数;
(Ⅱ)如表y与x的几组对应值:
X | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | ﹣1 | 1 | 3 | 5 | 3 | 1 | ﹣1 | ﹣3 | … |
(Ⅲ)如图,在平面直角坐标系中,描出以表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:
(1)若A(m,﹣11),B(8,﹣11)为该函数图象上不同的两点,则m= ;
(2)观察函数y=﹣2|x|+5的图象,写出该图象的一条性质 .
(3)直线y=kx+b(k≠0)经过点(﹣1,3)及点(4,﹣3),则当kx+b<﹣2|x|+5时,自变量x的取值范围是 .