题目内容

【题目】现有五个小球,每个小球上面分别标着1,2,3,4,5这五个数字中的一个,这些小球除标的数字不同以外,其余的全部相同.把分别标有数字4、5的两个小球放入不透明的口袋 A 中,把分别标有数字1、2、3的三个小球放入不透明的口袋 B 中.现随机从 A 和 B 两个口袋中各取出一个小球,把从 A 口袋中取出的小球上标的数字记作 m,从 B 口袋中取出的小球上标的数字记作n,且m﹣n=k,则关于x的一元二次方程2x2﹣4x+k=0有解的概率是

【答案】
【解析】解:画树状图如下:

∵关于x的一元二次方程2x2﹣4x+k=0有解,

∴△=16﹣8k≥0,即k≤2,

则关于x的一元二次方程2x2﹣4x+k=0有解的概率是 =

【考点精析】利用求根公式和列表法与树状图法对题目进行判断即可得到答案,需要熟知根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网