题目内容
【题目】阅读下面材料,并解决问题:
(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.
为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=__________;
(2)基本运用
请你利用第(1)题的解答思想方法,解答下面问题:
已知如图②,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2;
(3)能力提升
如图③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.
【答案】(1)150°;(2)EF2=BE2+FC2.(3).
【解析】
(1)由△ACP′≌△ABP可得旋转角∠PAP′=60°,可得△APP′为等边三角形,根据勾股定理逆定理可证明△PP′C为直角三角形,根据∠APB=∠AP′C=∠AP′P+∠PP′C即可得答案;(2)如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质可得AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,根据角的和差关系可得∠EAF=∠E′AF,利用SAS可证明△EAF≌△E′AF,可得E′F=EF,根据等腰直角三角形的性质可得∠E′CF=90°,根据勾股定理即可得结论;(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,根据含30°角的直角三角形的性质及勾股定理可求出AB、BC的长,根据旋转的性质可得∠A′BC=90°,△BOO′是等边三角形,由∠AOC=∠COB=∠BOA=120°,利用平角的定义可证明C、O、A′、O′四点共线,利用勾股定理求出A′C的长即可得答案.
(1)∵△ACP′≌△ABP,
∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB,
由题意知旋转角∠PAP′=60°,
∴△APP′为等边三角形,
∴P′P=AP=3,∠AP′P=60°,
∵P′C=PB=4,PC=5,
∴PC2=P′C2+P′P2,
∴△PP′C为直角三角形,且∠PP′C=90°,
∴∠APB=∠AP′C=∠AP′P+∠PP′C=60°+90°=150°.
故答案为:150°
(2)如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,
由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,
∵∠EAF=45°,
∴∠E′AF=∠EAE′-∠EAF=45°,
∴∠EAF=∠E′AF,
在△EAF和△E′AF中,
∴△EAF≌△E′AF(SAS),
∴E′F=EF,
∵∠CAB=90°,AB=AC,
∴∠B=∠ACB=45°,
∴∠E′CF=45°+45°=90°,
由勾股定理得,E′F2=CE′2+FC2,
即EF2=BE2+FC2.
(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,
∵在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,
∴AB=2,
∴BC=,
∵△AOB绕点B顺时针方向旋转60°,∠ABC=30°,
∴∠A′BC=∠ABC+60°=30°+60°=90°,
∵∠C=90°,AC=1,∠ABC=30°,
∴AB=2AC=2,
∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,
∴A′B=AB=2,BO=BO′,A′O′=AO,
∴△BOO′是等边三角形,
∴BO=OO′,∠BOO′=∠BO′O=60°,
∵∠AOC=∠COB=∠BOA=120°,
∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,
∴C、O、A′、O′四点共线,
在Rt△A′BC中,A′C=,
∴OA+OB+OC=A′O′+OO′+OC=A′C=.