题目内容
【题目】请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.
小刚同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠APB=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.
请你参考小刚同学的思路,探究并解决下列问题:
如图3,在正方形ABCD内有一点P,且PA=,BP=2,PC=.求∠BPC度数的大小和正方形ABCD的边长.
【答案】∠BPC=135°,正方形边长为.
【解析】
首先根据旋转的性质得出△BPC≌△BP′A,利用AP′=PC=,BP=BP′=2得出△AP′P是直角三角形,再利用过点B作BE⊥AP′交AP′的延长线于点E,利用勾股定理得出AB的长.
解:如图,将△BPC绕点B逆时针旋转90°,得△BP′A,
则△BPC≌△BP′A.
∴AP′=PC=,BP=BP′=2.
连结P P′,
在Rt△BP′P中,
∵BP=BP′=2,∠PBP′=90°,
∴P P′=2,∠BP′P=45°.
在△AP′P中,AP′=,P P′=2,AP=,
∵()2+(2)2=()2,即AP′2+PP′2=AP2.
∴△AP′P是直角三角形,即∠A P′P=90°.
∴∠AP′B=135°.
∴∠BPC=∠AP′B=135°.
如图,过点B作BE⊥AP′交AP′的延长线于点E.
∴∠EP′B=45°.
∴EP′=BE=.
∴AE=2.
∴在Rt△ABE中,由勾股定理,得AB=.
∴∠BPC=135°,正方形边长为.
练习册系列答案
相关题目