题目内容
【题目】如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结论:①AE=AF;②DF=DN;③AN=BF;④EN⊥NC;⑤AE=NC,其中正确结论的个数是( )
A. 2个B. 3个C. 4个D. 5个
【答案】D
【解析】
①根据等腰直角三角形的性质及角平分线的定义求得,继而可得∠AFE=∠AEB=67.5°,即可判断①;
②求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断②;
③根据A、B、D、M四点共圆求出∠ADM=22.5°,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③;
④求出∠BMD=45°=∠BMN,即可判断④;
⑤证明△AFB≌△CNA可得AF=CN,由AF=AE,即可判断⑤.
解:∵等腰Rt△ABC中,∠BAC=90°,AD⊥BC,
∴∠BAD=∠CAD=∠C=45°,
∵∵BE平分∠ABC,
∴∠ABE=∠CBE=∠ABC=22.5°,
∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°
∴∠AEF=∠AFE,
∴AE=AF,
故①正确;
∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE=∠ABC=22.5°,
∴∠BFD=∠AEB=90°﹣22.5°=67.5°,
∴AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,AM⊥BE,
∴∠AMF=∠AME=90°,
∴∠DAN=90°﹣67.5°=22.5°=∠MBN,
在△FBD和△NAD中
,
∴△FBD≌△NAD(ASA),
∴DF=DN,AN=BF,
∴②③正确;
连接EN,
∵AE=AF,FM=EM,
∴AM⊥EF,
∴∠BMA=∠BMN=90°,
∵BM=BM,∠MBA=∠MBN,
∴△MBA≌△MBN,
∴AM=MN,
∴BE垂直平分线段AN,
∴AB=BN,EA=EN,
∵BE=BE,
∴△ABE≌△NBE,
∴∠ENB=∠EAB=90°,
∴EN⊥NC.
故④正确;
在△AFB和△CNA中,
,
∴△AFB≌△CAN(ASA),
∴AF=CN,
∵AF=AE,
∴AE=CN,
故⑤正确;
其中正确结论的个数是:①②③④⑤,共5个;
故选:D.