题目内容

【题目】如图,∠AOCCODBOD=2:3:4,且AOB三点在一条直线上,OEOF分别平分∠AOC和∠BODOG平分∠EOF,求∠GOF的度数.将下列解题过程补充完整.

解:因为,∠AOCCODBOD=2:3:4,

所以∠AOC=   COD=   BOD=   

因为OEOF分别平分∠AOC和∠BOD

所以∠AOE=   BOF=   

所以∠EOF=   

又因为   ,所以∠GOF=60°.

【答案】40°,60°,80°,20°,40°,120°,OG平分∠EOF

【解析】

根据互补两角的和为180°和角平分线的性质即可求得∠EOF的大小,即可解题.

∵∠AOC:COD:BOD=2:3:4,AOC+COD+BOD=180°,

∴∠AOC=40°,COD=60°,BOD=80°,

OE、OF分别平分∠AOC和∠BOD,

∴∠AOE=COE=20°,BOF=DOF=40°,

∴∠EOF=180°﹣20°﹣40°=120°,

OG平分∠EOF,

∴∠GOF=60°,

故答案为:40°,60°,80°,20°,40°,120°,OG平分∠EOF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网