题目内容
【题目】如图,线段是的直径,点为上一点,于点,交于点与交于点,点为的延长线上一点,且.
(1)求证:是的切线;
(2)求证:;
(3)若的半径为5,,求的值.
【答案】(1)证明见解析;(2)证明见解析;(3)sin∠BAE=.
【解析】
(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;
(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;
(3)连接BE,得Rt△ABE,由得BE=CE=6,进而可求出的值
(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,
∴∠ODB=∠ABC,
∵OF⊥BC,
∴∠BFD=90°,
∴∠ODB+∠DBF=90°,
∴∠ABC+∠DBF=90°,
即∠OBD=90°,
∴BD⊥OB,
∴BD是⊙O的切线;
(2)证明:连接AC,如图1所示:
∵OF⊥BC,
∴,
∴∠CAE=∠ECB,
∵∠CEA=∠HEC,
∴△CEH∽△AEC,
∴,
∴CE2=EHEA;
(3)连接BE,如图2所示:
∵AB是⊙O的直径,
∴∠AEB=90°,
∵⊙O的半径为5,
∴AB=10,
∵,
∴BE=CE=6,
∴sin∠BAE=.
【题目】为推动实施健康中国战略,树立国家健康形象.手机APP推出多款健康运动软件,如“微信运动”.王老师随机调查了我校50名教师某日“微信运动”中的步数,并进行统计整理,绘制了如下的统计图表.
步数 | 频数 | 频率 |
8 | ||
15 | 0.3 | |
0.24 | ||
10 | 0.2 | |
3 | 0.06 | |
2 | 0.04 | |
合计 | 50 |
请根据以上信息,解答下列问题:
(1)_______,_______,________;
(2)补全频数分布直方图;
(3)若某人一天的走路步数不低于16000步,将被“微信运动”评为“运动达人”.我市市区约有4000名初中教师,根据此项调查请估计市区被评为“运动达人”教师有多少名?
【题目】某超市以20元/kg的价格购进一批商品进行销售,根据以往的销售经验及对市场行情的调研,该超市得到日销售量y(kg)与销售价格x(元/kg)之间的关系,部分数据如下表:
销售价格x(元/kg) | 25 | 30 | 35 | 40 | … |
日销售量y(kg) | 1000 | 800 | 600 | 400 | … |
(1)根据表中的数据,用所学过的函数知识确定y与x之间的函数关系式;
(2)超市应如何确定销售价格,才能使日销售利润W(元)最大?W最大值为多少?
(3)供货商为了促销,决定给予超市a元/kg的补贴,但希望超市在30≤x≤35时,最大利润不超过10240元,求a的最大值.