题目内容
【题目】观察下列有规律的算式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,13+23+33+43+53=225,…,探究并运用其规律计算:113+123+133+143+153+163+173+183+193+203的结果可表示为( )
A.B.C.D.
【答案】A
【解析】
找出已知等式的运算规律,并归纳公式,然后先求出13+23+33+……+113+123+133+143+153+163+173+183+193+203的值,再求出13+23+33+……103的值,最后两式相减并利用平方差公式化简即可.
解:13=1,
13+23=9=(1+2)2,
13+23+33=36=(1+2+3)2,
13+23+33+43=100=(1+2+3+4)2,
13+23+33+43+53=225=(1+2+3+4+5)2,
∴13+23+33+……+n3=(1+2+3+……+n)2=,
∴13+23+33+……+113+123+133+143+153+163+173+183+193+203==2102①
而13+23+33+……103==552②
∴①-②,得
113+123+133+143+153+163+173+183+193+203=2102-552=(210+55)×(210-55)=265×155
故选A.
【题目】某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:
销售单价x(元) | 85 | 95 | 105 | 115 |
日销售量y(个) | 175 | 125 | 75 | m |
日销售利润w(元) | 875 | 1875 | 1875 | 875 |
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;
(2)根据以上信息,填空:
该产品的成本单价是 元,当销售单价x= 元时,日销售利润w最大,最大值是 元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
【题目】某单位要将一份宣传资料进行批量印刷.在甲印刷厂,在收取100元制版费的基础上,每份收费0.5元;在乙印刷厂,在收取40元侧版费的基础上,每份收费0.7元.设该单位要印刷此宣传资料份(为正整数).
(Ⅰ)根据题意,填写下表:
印剧数量(份) | 150 | 250 | 350 | 450 | … |
甲印刷厂收费(元) | 175 | ① | 275 | ② | … |
乙印刷厂收费(元) | 145 | 215 | ③ | 355 | … |
(Ⅱ)设在甲印刷厂收费元,在乙印刷厂收费元,分别写出,关于的函数解析式;
(Ⅲ)当时,在哪家印刷厂花费少?请说明理由.