题目内容
【题目】已知二次函数y=x2﹣2(m+1)x+m(m+2)
(1)求证:无论m为任何实数,该函数图象与x轴两个交点之间的距离为定值.
(2)若该函数图象的对称轴为直线x=2,试求二次函数的最小值.
【答案】
(1)证明:设抛物线与x轴的两交点分别为(a,0),(b,0),
则a+b=2(m+1),ab=m(m+2),
所以|a﹣b|= = = =2,
即无论m为任何实数,该函数图象与x轴两个交点之间的距离为定值
(2)解:根据题意得x=﹣ =2,解得m=0,
则抛物线解析式为y=x2﹣2x=(x﹣1)2﹣1,
所以二次函数的最小值为﹣1
【解析】(1)设抛物线与x轴的两交点分别为(a,0),(b,0),根据抛物线与x轴的交点问题,得到方程x2﹣2(m+1)x+m(m+2)=0的两根分别为a与b,根据根与系数的关系得a+b=2(m+1),ab=m(m+2),而函数图象与x轴两个交点之间的距离可表示为|a﹣b|,然后根据代数式的变形得到|a﹣b|= = ,再利用整体代入的方法得到|a﹣b|= =2,由此可判断函数图象与x轴两个交点之间的距离为定值.(2)根据抛物线的对称轴方程得到x=﹣ =2,解得m=0,则抛物线解析式为y=x2﹣2x,然后配成顶点式得到二次函数的最小值.
【考点精析】本题主要考查了二次函数的最值和抛物线与坐标轴的交点的相关知识点,需要掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能正确解答此题.
【题目】随着手机的普及,微信一种聊天软件的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况超额记为正,不足记为负单位:斤;
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
与计划量的差值 |
|
|
|
|
|
|
|
(1)根据记录的数据可知前三天共卖出 ______ 斤;
(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 ______ 斤;
(3)本周实际销售总量达到了计划数量没有?
(4)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?