题目内容
【题目】已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.
【答案】底边长为4cm,腰长为10cm.
【解析】根据题意画出图形,设△ABC的腰长为xcm,则AD=DC=xcm,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.
解:如图,△ABC是等腰三角形,AB=AC,BD是AC边上的中线.
设△ABC的腰长为xcm,则AD=DC=xcm.
分下面两种情况解:
①AB+AD=x+x=9, ∴x=6. ∵三角形的周长为9+15=24(cm),
∴三边长分别为6cm,6cm,12cm. 6+6=12, 不符合三角形的三边关系,舍去;
②AB+AD=x+x=15, ∴x=10. ∵三角形的周长为24cm,
∴三边长分别为10cm,10cm,4cm,符合三边关系.
综上所述,这个等腰三角形的底边长为4cm,腰长为10cm.
练习册系列答案
相关题目