题目内容

【题目】如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:

(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;

(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).

【答案】(1) CD=BE.理由见解析;(2)△AMN是等边三角形.理由见解析.

【解析】

(1)CD=BE.利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE≌△ACD;然后根据全等三角形的对应边相等即可求得结论CD=BE;(2)△AMN是等边三角形.首先利用全等三角形“△ABE≌△ACD”的对应角相等、已知条件“M、N分别是BE、CD的中点”、等边△ABC的性质证得△ABM≌△ACN;然后利用全等三角形的对应边相等、对应角相等求得AM=AN、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.

(1)CD=BE.理由如下:∵△ABC和△ADE为等边三角形,

∴AB=AC,AD=AE,∠BAC=∠EAD=60°,

∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,

∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,

∴∠BAE=∠DAC,

在△ABE和△ACD中,

∴△ABE≌△ACD(SAS)

∴CD=BE

(2)△AMN是等边三角形.理由如下:∵△ABE≌△ACD,

∴∠ABE=∠ACD.

∵M、N分别是BE、CD的中点,∴BM=CN

∵AB=AC,∠ABE=∠ACD,

在△ABM和△ACN中,

∴△ABM≌△ACN(SAS).

∴AM=AN,∠MAB=∠NAC.

∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°

∴△AMN是等边三角形

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网