题目内容

【题目】如图1,直线交x轴于点C,交y轴于点D,与反比例函数的图像交于两点A、E,AG⊥x轴,垂足为点G,S△AOG=3.

(1)k =

(2)求证:AD =CE;

(3)如图2,若点E为平行四边形OABC的对角线AC的中点,求平行四边形OABC的面积

【答案】(1)k=6;

(2)证明见解析;

(3)S平行四边形OABC=18

【解析】(1)设A(m,n),由题意 OGAG=3,推出mn=6,由点A在y=上,推出k=mn=6.

(2)如图1中,作AN⊥OD于N,EM⊥OC于M.设直线CD的解析式为y=k′x+b,A(x1,y1),E(x2,y2).首先证明EM=﹣k′AN,EM=﹣k′MC,推出AN=CM,再证明△DAN≌△ECM,即可解决问题.

(3)如图2中,连接GD,GE.由EA=EC,AD=EC,推出AD=AE=EC,推出S△ADG=S△AGE=S△GEC=3,求出△AOC的面积即可解决问题.

试题解析:

(1)解:设A(m,n),

OGAG=3,

mn=3,

∴mn=6,

∵点A在y=上,

∴k=mn=6.

(2)证明:如图1中,作AN⊥OD于N,EM⊥OC于M.设直线CD的解析式为y=k′x+b,A(x1,y1),E(x2,y2).

则有y1=k′x1+b,y2=k′x2+b,

∴y2﹣y1=k′(x2﹣x1),

=k′(x2﹣x1),

∴﹣k′x1x2=6,

∴﹣k′x1=

∴y2=﹣k′x1

∴EM=﹣k′AN,

∵D(0,b),C(﹣,0),

∴tan∠DCO==﹣k′=

∴EM=﹣k′MC,

∴AN=CM,

∵AN∥CM,

∴∠DAN=∠ECM,

在△DAN和△ECM中,

∴△DAN≌△ECM,

∴AD=EC.

(3)解:如图2中,连接GD,GE.

∵EA=EC,AD=EC,

∴AD=AE=EC,

∴S△ADG=S△AGE=S△GEC=3,

∵S△AOG=S△ADG=3,

∴S△AOC=3+3+3=9,

∴平行四边形ABCD的面积=2S△AOC=18.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网