题目内容
【题目】如图1和图2,在△ABC中,AB=13,BC=14,.
探究:如图1,AH⊥BC于点H,则AH=___,AC=___,△ABC的面积=___.
拓展:如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD的垂线,垂足为E、F,设BD=x,AE=m,CF=n,(当点D与A重合时,我们认为=0).
(1)用含x、m或n的代数式表示及;
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.
发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.
【答案】探究:12,15,84;拓展:(1),;(2);x=时,()的最大值为15;当时,()的最小值为12;(3)或;发现:.
【解析】
探究:由,AB=13,可得BH的长,即可求出CH的长,利用勾股定理求出AH、AC的长即可;拓展:(1)由三角形的面积公式即可求解;(2)首先由(1)可得,,再根据S△ABD+S△CBD=S△ABC=84,即可求出(m+n)与x的函数关系式,然后由点D在AC上(可与点A,C重合),可知x的最小值为AC边上的高,最大值为BC的长;根据反比例函数的性质即可得答案;(3)由于BC>BA,所以当以B为圆心,以大于且小于13为半径画圆时,与AC有两个交点,不符合题意,故根据点D的唯一性,分两种情况:①当BD为△ABC的边AC上的高时,D点符合题意;②当AB<BD≤BC时,D点符合题意;发现:由于AC>BC>AB,所以使得A、B、C三点到这条直线的距离之和最小的直线就是AC所在的直线.
探究:∵,AB=13,
∴BH=5,
∴,
∴HC=9,,
∴S△ABC=×12×14=84,
故答案为12,15,84;
拓展:解:(1)由三角形面积公式得出:,;
(2)∵,,
∴,
∵AC边上的高为:,
∴x的取值范围为:,
∵()随的增大而减小,
∴时,()的最大值为:15;
当时,()的最小值为12;
(3)∵BC>BA,只能确定唯一的点D,
∴当以B为圆心,以大于且小于13为半径画圆时,与AC有两个交点,不符合题意,
①当BD为△ABC的边AC上的高时,即x=时,BD与AC有一个交点,符合题意,
②当AB<BD≤BC时,即时,BD与AC有一个交点,符合题意,
∴x的取值范围是或,
发现:
∵AC>BC>AB,
∴AC、BC、AB三边上的高中,AC边上的高最短,
∴过A、B、C三点到这条直线的距离之和最小的直线就是AC所在的直线,最小值为AC边上的高的长.