题目内容
【题目】阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m﹣n)2=0,(n﹣4)2=0
∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴n=4,m=4.
∴(m﹣n)2+(n﹣4)2=0,
根据你的观察,探究下面的问题:
(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;
(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值.
【答案】(1)xy=9;(2)△ABC的最大边c的值可能是6、7、8、9、10;
【解析】
(1)根据,应用因式分解的方法,判断出
,求出x、y的值各是多少,再把它们相乘,求出xy的值是多少即可;
(2)首先根据a2+b2﹣10a﹣12b+61=0,应用因式分解的方法,判断出,求出a、b的值各是多少;然后根据三角形的三条边的长度的关系,求出△ABC的最大边c的值是多少即可;
解:
(1)∵,
∴,
∴,
∴xy=0,y+3=0,
∴x=3,y=3,
∴xy=(3)×(3)=9,
即xy的值是9;
(2)∵a2+b2﹣10a﹣12b+61=0,
∴,
∴,
∴a5=0,b6=0,
∴a=5,b=6,
∵65<c<6+5,c6,
∴6c<11,
∴△ABC的最大边c的值可能是6、7、8、9、10;
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目