题目内容

【题目】(1)如图甲,AB∥CD,试问∠2与∠1+∠3的关系是什么,为什么?
(2)如图乙,AB∥CD,试问∠2+∠4与∠1+∠3+∠5一样大吗?为什么?
(3)如图丙,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7哪个大?为什么?
你能将它们推广到一般情况吗?请写出你的结论.

【答案】解:(1)∠2=∠1+∠3.
过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BEF=∠1,∠CEF=∠3,
∴∠2=∠BEF+∠CEF=∠1+∠3;
(2)∠2+∠4=∠1+∠3+∠5.
分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,
∵AB∥CD,
∴AB∥CD∥EF∥GH∥MN,
∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,
∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠MGH+∠5=∠1+∠3+∠5;
(3)∠2+∠4+∠6=∠1+∠3+∠5+∠7.
分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,
∵AB∥CD,
∴AB∥CD∥EF∥GH∥MN∥KL∥PQ,
∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠KMN=∠LKM,∠LKP=∠KPQ,∠QPC=∠7,
∴∠2+∠4+∠6=∠1+∠3+∠5+∠7.
归纳:开口朝左的所有角度之和与开口朝右的所有角度之和相等.

【解析】(1)首先过点E作EF∥AB,由AB∥CD,可得AB∥CD∥EF,根据平行线的性质,易得∠2=∠BEF+∠CEF=∠1+∠3;
(2)首先分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,由AB∥CD,可得AB∥CD∥EF∥GH∥MN,由平行线的性质,可得∠2+∠4=∠1+∠3+∠5.
(3)首先分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,由AB∥CD,可得AB∥CD∥EF∥GH∥MN∥KL∥PQ,然后利用平行线的性质,即可证得∠2+∠4+∠6=∠1+∠3+∠5+∠7.
【考点精析】本题主要考查了平行线的性质的相关知识点,需要掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网