题目内容
如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.
(1)求证:AP=AO;
(2)求证:PE⊥AO;
(3)当AE=AC,AB=10时,求线段BO的长度.
(1)证明见解析;
(2)证明见解析;
(3)BO=.
解析试题分析:(1)根据等角的余角相等证明即可;
(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;
(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt△BDO中,利用勾股定理列式求解即可.
试题解析:(1)∵∠C=90°,∠BAP=90°
∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,
又∵∠CBO=∠ABP,
∴∠BOC=∠ABP,
∵∠BOC=∠AOP,
∴∠AOP=∠ABP,
∴AP=AO;
(2)如图,过点O作OD⊥AB于D,
∵∠CBO=∠ABP,
∴CO=DO,
∵AE=OC,
∴AE=OD,
∵∠AOD+∠OAD=90°,∠PAE+∠OAD=90°,
∴∠AOD=∠PAE,
在△AOD和△PAE中,
∵AE=OD,∠AOD=∠PAE,AP=AO,
∴△AOD≌△PAE(SAS),
∴∠AEP=∠ADO=90°
∴PE⊥AO;
(3)设AE=OC=3k,
∵AE=AC,∴AC=8k,
∴OE=AC﹣AE﹣OC=2k,
∴OA=OE+AE=5k.
由(1)可知,AP=AO=5k.
如图,过点O作OD⊥AB于点D,
∵∠CBO=∠ABP,∴OD=OC=3k.
在Rt△AOD中,AD===4k.
∴BD=AB﹣AD=10﹣4k.
∵OD∥AP,
∴,即
,
∵AB=10,PE=AD,
∴PE=AD=4K,BD=AB﹣AD=10﹣4k,
由∠CBO=∠ABP,根据轴对称BC=BD=10﹣4k,
∵∠BOC=∠EOP,∠C=∠PEO=90°,
∴△BCO∽△PEO,
∴,
即 ,
解得k=1.
∴BD=10﹣4k=6,OD=3k=3,
在Rt△BDO中,由勾股定理得:
BO=.
考点:1.相似三角形的判定与性质2.全等三角形的判定与性质3.角平分线的性质4.等腰三角形的判定与性质.