题目内容
【题目】八年 2 班组织了一次经典诵读比赛,甲乙两组各 10 人的比赛成绩如下表(10 分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(Ⅰ)甲组数据的中位数是 ,乙组数据的众数是 ;
(Ⅱ)计算乙组数据的平均数和方差;
(Ⅲ)已知甲组数据的方差是 1.4 分,则成绩较为整齐的是 。
【答案】(1)9.5,10;(2)9,1;(3)乙组.
【解析】
(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可; (2)先求出乙组的平均成绩,再根据方差公式进行计算; (3)先比较出甲组和乙组的方差,再根据方差的意义即可得出答案.
解:(1)把甲组的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,
最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;
乙组成绩中10出现了4次,出现的次数最多,则乙组成绩的众数是10分; 故答案为:9.5,10;
(2)乙组的平均成绩是:(10×4+8×2+7+9×3)=9,
则方差是:[4×(10-9)2+2×(8-9)2+(7-9)2+3×(9-9)2]=1;
(3)∵甲组成绩的方差是1.4,乙组成绩的方差是1,
∴成绩较为整齐的是乙组,故答案为乙组.
练习册系列答案
相关题目