题目内容
【题目】如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA 交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
(1)求证:AH是⊙O的切线;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求证:CD=DH.
【答案】(1)见解析;(2);(3)见解析.
【解析】分析:(1)、连接OA,根据圆周角定理得出∠ADE=∠ADB,然后证明△DAB和△DAE全等,从而得出AB=AE,结合OB=OD得出OA∥DE,从而得出答案;(2)、根据切线的性质得出AE=AC=AB=6,根据Rt△ABD的三角函数得出答案;(3)、根据OA是中位线得出△CDF和△AOF相似,从而得出答案.
详解:(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,
∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,
∠BAD=∠EAD,DA=DA,∠BDA=∠EDA,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,
∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;
(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.
在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB=,即sin∠ACB=;
(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.
∴△CDF∽△AOF,∴,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,
∴CH=HE=CE,∴CD=CH,∴CD=DH.
练习册系列答案
相关题目