题目内容

【题目】如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.

(1)求证:BD+2DE=BM.
(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM=2,则线段DG=_____;

【答案】
(1)

证明:过点M作MP⊥BC交BD的延长线于点P,

∵四边形ABCD是正方形,

∴∠BCD=90°,∠DBC=∠BDC=45°,

∴PM∥CN,

∴∠N=∠EMP,∠BDC=∠MPB=45°,

∴BM=PM,

∵BM=DN,

∴DN=MP,

在△DEN和△PEM中

∴△DEN≌△PEM,

∴DE=EP,

∵△BMP是等腰直角三角形

∴BP=BM

∴BD+2DE=BM.


(2)

解:∵AF:FD=1:2,

∴DF:BC=2:3,

∵△BCN∽△FDN,

设正方形边长为a,又知CM=2,

∴BM=DN=a+2,CN=2a+2

解得:a=2,

∴DF=,BM=4,BD=

又∵△DFG∽△BMG,

∴DG=

故答案为:


【解析】(1)过点M作MP⊥BC交BD的延长线于点P,首先证明△DEN≌△PEM,得到DE=PE,由△BMP是等腰直角三角形可知BP=BM,即可得到结论;
(2)由AF:FD=1:2,可知DF:BC=2:3,由△BCN∽△FDN,可求出BC=2,再由△DFG∽△BMG即可求出DG的长.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对正方形的性质的理解,了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网