题目内容
【题目】如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB.
【答案】85°
【解析】
根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.
如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.
∵∠BAE=45°,∠EAC=15°,
∴∠BAC=∠BAE+∠EAC=45°+15°=60°.
∵AE,DB是正南正北方向,
∴BD∥AE,
∵∠DBA=∠BAE=45°,
又∵∠DBC=80°,
∴∠ABC=80°45°=35°,
∴∠ACB=180°∠ABC∠BAC=180°60°35°=85°.
练习册系列答案
相关题目