题目内容
【题目】已知:如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,点E、F分别在边BC、CD上,且BE=DF=AD,联结DE,联结AF、BF分别与DE交于点G、P.
(1)求证:AB=BF;
(2)如果BE=2EC,求证:DG=GE.
【答案】
(1)证明:∵BC=CD,BE=DF,
∴CF=CE,
在△BCF与△DCE中,
,
∴△BCF≌△DCE,
∴BF=DE,
∵AD∥BC,BE=AD,
∴四边形ABED是平行四边形;
∴AB=DE,
∴AB=BF
(2)证明:延长AF交BC延长线于点M,则CM=CF;
∵AD∥BC,
∴ = ,
∵BE=2EC,
∴ = =1,
∴DG=GE.
【解析】(1)先证△BCF≌△DCE,再证四边形ABED是平行四边形,从而得AB=DE=BF.(2)延长AF交BC延长线于点M,从而CM=CF,又由AD∥BC可以得到 = =1,从而DG=GE.
【考点精析】认真审题,首先需要了解直角梯形(一腰垂直于底的梯形是直角梯形),还要掌握相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方)的相关知识才是答题的关键.
练习册系列答案
相关题目