题目内容
【题目】某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:
t(秒) | 0 | 0.16 | 0.2 | 0.4 | 0.6 | 0.64 | 0.8 | 6 |
X(米) | 0 | 0.4 | 0.5 | 1 | 1.5 | 1.6 | 2 | … |
y(米) | 0.25 | 0.378 | 0.4 | 0.45 | 0.4 | 0.378 | 0.25 | … |
(1)当t为何值时,乒乓球达到最大高度?
(2)乒乓球落在桌面时,与端点A的水平距离是多少?
(3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k.
①用含a的代数式表示k;
②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.
【答案】
(1)
解:由表格中数据可得,t=0.4(秒),乒乓球达到最大高度
(2)
解:由表格中数据,可得y是x的二次函数,可设y=a(x﹣1)2+0.45,
将(0,0.25)代入,可得:a=﹣ ,
则y=﹣ (x﹣1)2+0.45,
当y=0时,0=﹣ (x﹣1)2+0.45,
解得:x1= ,x2=﹣ (舍去),
即乒乓球与端点A的水平距离是 m
(3)
解:①由(2)得乒乓球落在桌面上时,对应点为:( ,0),
代入y=a(x﹣3)2+k,得( ﹣3)2a+k=0,
化简得:k=﹣ a;
②∵球网高度为0.14米,球桌长(1.4×2)米,
∴扣杀路线在直线经过(0,0)和(1.4,0.14)点,
由题意可得,扣杀路线在直线y= x上,由①得,y=a(x﹣3)2﹣ a,
令a(x﹣3)2﹣ a= x,
整理得:20ax2﹣(120a+2)x+175a=0,
当△=(120a+2)2﹣4×20a×175a=0时符合题意,
解方程得:a1= ,a2= ,
当a1= 时,求得x=﹣ ,不符合题意,舍去;
当a2= 时,求得x= ,符合题意
【解析】(1)利用网格中数据直接得出乒乓球达到最大高度时的时间;(2)首先求出函数解析式,进而求出乒乓球落在桌面时,与端点A的水平距离;(3)①由(2)得乒乓球落在桌面上时,得出对应点坐标,只要利用待定系数法求出函数解析式即可;②由题意可得,扣杀路线在直线y= x上,由①得,y=a(x﹣3)2﹣ a,进而利用根的判别式求出a的值,进而求出x的值.
【题目】某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:
x(单位:台) | 10 | 20 | 30 |
y(单位:万元∕台) | 60 | 55 | 50 |
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)