题目内容
【题目】如图,一枚运载火箭从地面L处发射,当火箭到达A点时,从位于距发射架底部4km处的地面雷达站R(LR=4)测得火箭底部的仰角为43°.1s后,火箭到达B点,此时测得火箭底部的仰角为45.72°.这枚火箭从A到B的平均速度是多少 (结果取小数点后两位)?
(参考数据:sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,
sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)
【答案】解:∵在Rt△ALR中,tan43°= ,LR=4,
∴AL=4×0.933=3.732,
∵在Rt△BLR中,tan45.72°= ,LR=4,
∴BL=4×1.025=4.1,
∴AB=4.1﹣3.732=0.368≈0.37,
∵火箭从A到B用时1s,
∴火箭从A到B的平均速度为:0.37÷1=0.37km/s,
即这枚火箭从A到B的平均速度是0.37km/s.
【解析】根据直角三角形的三角函数值在Rt△ALR中,tan43°的值,求出AL的值,由在Rt△BLR中,tan45.72°的值,求出BL的值,得到AB的值,由火箭从A到B用时1s,得到火箭从A到B的平均速度.
【考点精析】通过灵活运用关于仰角俯角问题,掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角即可以解答此题.
【题目】某超市第一次用6000元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍多20件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):
甲 | 乙 | |
进价(元/件) | 20 | 28 |
售价(元/件) | 26 | 40 |
(1)该超市第一次购进甲、乙两种商品的件数分别是多少?
(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?
(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多560元,则第二次乙商品是按原价打几折销售的?