题目内容
【题目】如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.
(1)求证:∠EPD=∠EDO;
(2)若PC=3,tan∠PDA=,求OE的长.
【答案】(1)见解析;(2).
【解析】
(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=,可求出CD=2,进而求得OC=,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.
(1)证明:∵PA,PC与⊙O分别相切于点A,C,
∴∠APO=∠CPO, PA⊥AO,
∵DE⊥PO,
∴∠PAO=∠E=90°,
∵∠AOP=∠EOD,
∴∠APO=∠EDO,
∴∠EPD=∠EDO.
(2)连接OC,
∴PA=PC=3,
∵tan∠PDA=,
∴在Rt△PAD中,
AD=4,PD==5,
∴CD=PD-PC=5-3=2,
∵tan∠PDA=,
∴在Rt△OCD中,
OC=,
OD==,
∵∠EPD=∠ODE,∠OCP=∠E=90°,
∴△OED∽△DEP,
∴===2,
∴DE=2OE,
在Rt△OED中,OE2+DE2=OD2,即5OE2==,
∴OE=.
练习册系列答案
相关题目