题目内容
【题目】已知,是等边三角形,是直线上一点,以为顶点做 . 交过且平行于的直线于,求证:;当为的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取的中点,连结,然后证明. 从而得到,我们继续来研究:
(1)如图2、当D是BC上的任意一点时,求证:
(2)如图3、当D在BC的延长线上时,求证:
(3)当在的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).
【答案】(1)见解析;(2)见解析;(4)见解析,,仍成立
【解析】
(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;
(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;
(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.
(1)证明:在AB上截取AF=DC,连接FD,如图所示:
∵△ABC是等边三角形,
∴AB=BC,∠B=60°,
又∵AF=DC,
∴BF=BD,
∴△BDF是等边三角形,
∴∠BFD=60°,
∴∠AFD=120°,
又∵AB∥CE,
∴∠DCE=120°=∠AFD,
而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,
∴∠FAD=∠CDE,
在△AFD和△DCE中
,
∴△AFD≌△DCE(ASA),
∴AD=DE;
(2)证明:在BA的延长线上截取AF=DC,连接FD,如图所示:
∵△ABC是等边三角形,
∴AB=BC,∠B=60°,
又∵AF=DC,
∴BF=BD,
∴△BDF是等边三角形,
∴∠F=60°,
又∵AB∥CE,
∴∠DCE=60°=∠F,
而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,
又∵∠ADE=∠B=60°,
∴∠FAD=∠CDE,
在△AFD和△DCE中,
,
∴△AFD≌△DCE(ASA),
∴AD=DE;
(3)解:AD=DE仍成立.理由如下:
在AB的延长线上截取AF=DC,连接FD,如图所示:
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∴∠FAD+∠ADB=60°,
又∵AF=DC,
∴BF=BD,
∵∠DBF=∠ABC=60°,
∴△BDF是等边三角形,
∴∠AFD=60°,
又∵AB∥CE,
∴∠DCE=∠ABC=60°,
∴∠AFD=∠DCE,
∵∠ADE=∠CDE+∠ADB=60°,
∴∠FAD=∠CDE,
在△AFD和△DCE中,
,
∴△AFD≌△DCE(ASA),
∴AD=DE.
【题目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:
放水时间(分) | 1 | 2 | 3 | 4 | … |
水池中水量(m3) | 38 | 36 | 34 | 32 | … |
下列结论中正确的是( )
A. y随t的增加而增大
B. 放水时间为15分钟时,水池中水量为8m3
C. 每分钟的放水量是2m3
D. y与t之间的关系式为y=40t
【题目】一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:
销售单价x(元/kg) | 120 | 130 | … | 180 |
每天销量y(kg) | 100 | 95 | … | 70 |
设y与x的关系是我们所学过的某一种函数关系.
(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;
(2)当销售单价为多少时,销售利润最大?最大利润是多少?