题目内容
【题目】一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:
销售单价x(元/kg) | 120 | 130 | … | 180 |
每天销量y(kg) | 100 | 95 | … | 70 |
设y与x的关系是我们所学过的某一种函数关系.
(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;
(2)当销售单价为多少时,销售利润最大?最大利润是多少?
【答案】(1)y=﹣0.5x+160,120≤x≤180;(2)当销售单价为180元时,销售利润最大,最大利润是7000元.
【解析】
试题分析:(1)观察由表格可知,销售单价没涨10元,就少销售5kg,即可判定y与x是一次函数关系,由待定系数法求函数解析即可;(2)设销售利润为w元,根据题意得出w与x的二次函数关系,根据二次函数的性质即可求得最大利润.
试题解析:(1)∵由表格可知:销售单价没涨10元,就少销售5kg,
∴y与x是一次函数关系,
∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,
∵销售单价不低于120元/kg.且不高于180元/kg,
∴自变量x的取值范围为:120≤x≤180;
(2)设销售利润为w元,
则w=(x﹣80)(﹣0.5x+160)=﹣x2+200x﹣12800=﹣(x﹣200)2+7200,
∵a=﹣<0,
∴当x<200时,y随x的增大而增大,
∴当x=180时,销售利润最大,最大利润是:w=﹣(180﹣200)2+7200=7000(元),
答:当销售单价为180元时,销售利润最大,最大利润是7000元.
练习册系列答案
相关题目