题目内容
【题目】如图,抛物线与轴交于,两点,与轴交于点,点是抛物线的顶点.
(1)求抛物线的解析式.
(2)点是轴负半轴上的一点,且,点在对称轴右侧的抛物线上运动,连接,与抛物线的对称轴交于点,连接,当平分时,求点的坐标.
(3)直线交对称轴于点,是坐标平面内一点,请直接写出与全等时点的坐标.
【答案】(1);(2)点的坐标为:,;(3)若与全等,点有四个,坐标为,,,.
【解析】
(1)用待定系数法,直接将代入解析式即可求解.
(2)由平分,平行即可求出,继而得出点坐标,由直线解析式即可求出与抛物线交点坐标即可.
(3)由三点的坐标可得三边长,由坐标可得和中,则另两组边对应相等即可,设点坐标为;利用两点间距离公式即列方程求解.
(1)抛物线经过,两点,
,
解得:,
抛物线的解析式为:.
(2)如图1,设对称轴与轴交于点,
平分,
,
又,
,
,
.
在中,,.
,
;.
①当时,直线解析式为:,
依题意得:.
解得:,,
点在对称轴右侧的抛物线上运动,
点纵坐标.
,
②当时,直线解析式为:,
同理可求:,
综上所述:点的坐标为:,,
(3)由题意可知:,,,
,
,
,
直线经过,,
直线解析式为,
抛物线对称轴为,而直线交对称轴于点,
坐标为;
,
设点坐标为,
则,
则,
,若与全等,有两种情况,
Ⅰ.,,即.
,
解得:,,
即点坐标为,.
Ⅱ.,,即.
,
解得:,,
即点坐标为,.
故若与全等,点有四个,坐标为,,,.
练习册系列答案
相关题目