题目内容
【题目】数学实践活动课中小明同学测量某建筑物的高度,如图,已知斜坡的坡度为,小明在坡底点处测得建筑物顶端处的仰角为,他沿着斜坡行走米到达点处,在测得建筑 物顶端处的仰角为,小明和建筑物的剖面在同一平面内,小明的身高忽略不计.则建筑物的高度约为( )(参考数据:)
A.米B.米C.米D.米
【答案】D
【解析】
如图,过F点作FH⊥CD,垂足为H,作FG⊥EB,垂足为G.利用坡度先求出FG与EG,设DE=CD=x,表示出FH,CH,再利用三角函数即可解得.
如图,过F点作FH⊥CD,垂足为H,作FG⊥EB,垂足为G.
根据题意易知DC=DE,EF=13m,∠CFH=35°,HF=GD,HD=FG
∵斜坡的坡度为,且EF=13m
故FG=5m,EG=12m
设DE=CD=x,则FH=DE+EG=x+12,CH=CD-HD=CD-FG=x-5
在直角三角形CHF中,
解得x≈44.7
故选D
练习册系列答案
相关题目
【题目】数学学习小组根据函数学习的经验,对一个新函数的图象和性质进行了如下探究:
列表,下表是函数与自变量的几组对应值
··· | ··· | |||||||||||
··· | ··· |
请直接写出
如图,在平面直角系中,描出上表中各对对应值为坐标的点 (其中为横坐标,为纵坐标),并根据描出的点画出函数的图象
观察所画出的函数图象,写出该函数的性质(写一条性质即可)
请结合画出的函数图象与表格中数据,直接写出关于的不等式的解集: