题目内容
【题目】△ABC中,∠BAC=α°,AB=AC,D是BC上一点,将AD绕点A顺时针旋转α°,得到线段AE,连接BE.
(1)(特例感知)如图1,若α=90,则BD+BE与AB的数量关系是 .
(2)(类比探究)如图2,若α=120,试探究BD+BE与AB的数量关系,并证明.
(3)(拓展延伸)如图3,若α=120,AB=AC=4,BD=,Q为BA延长线上的一点,将QD绕点Q顺时针旋转120°,得到线段QE,DE⊥BC,求AQ的长.
【答案】(1);(2),见解析;(3)
【解析】
(1)根据SAS可证△ABE≌△ACD,进而可得BE=CD,结合BD+CD=BC可得BD+ BE=BC,再根据等腰直角三角形中BC=即可证得;
(2)过点A作AH⊥BC,根据∠BAC=120°,AB=AC可得∠ABC=30°,,则,由(1)可知BD+ BE=BC,由此即可得;
(3)过Q点作QF∥AC交BC延长线于点F,先证∠BQF =120°,BQ=QF,进而可由(2)同理可知,△QBE≌△QFD,,进而可证得,再根据cos∠EBD==cos60°=可求得,进而求得,最后根据AQ=BQ-AB即可得到答案.
解:(1)
理由如下:
∵∠EAD=∠BAC=90°
∴∠EAB=∠DAC
在△ABE与△ACD中,
∴△ABE≌△ACD(SAS)
∴BE=CD,
∵BD+CD=BC
∴BD+ BE=BC
∵在Rt△ABC中,∠BAC=90°,AB=AC,
∴BC=
∴BD+ BE=;
(2)结论:,
理由如下:
过点A作AH⊥BC,
∵∠BAC=120°,AB=AC
∴∠ABC=30°,
在Rt△ABH中,cos∠ABH==cos30°=
∴BH=AB,
∴
由(1)同理可知BD+ BE=BC,
∴;
(3)过Q点作QF∥AC交BC延长线于点F,
∴
∴∠QFC=∠QBF =30°,∠BQF =120°
∴BQ=QF
由(2)同理可知,△QBE≌△QFD,
∴cos∠EBD==cos60°=
∵
,
∴AQ=BQ-AB=.