题目内容

【题目】如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____

【答案】

【解析】

连接AC,根据题意易证△AOC∽△COB,,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可.

解:连接AC,

∵A、B两点的横坐标分别为﹣1,4,

∴OA=1,OB=4,

∵∠ACB=90°,

∴∠CAB+∠ABC=90°,

∵CO⊥AB,

∴∠ABC+∠BCO=90°,

∴∠CAB=∠BCO,

∵∠AOC=∠BOC=90°,

∴△AOC∽△COB,

=

解得OC=2,

C的坐标为(0,2),

∵A、B两点的横坐标分别为﹣1,4,

设抛物线解析式为y=a(x+1)(x﹣4),

把点C的坐标代入得,a(0+1)(0﹣4)=2,

解得a=﹣

∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣2+

此抛物线顶点的坐标为 ).

故答案为: ).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网