题目内容

已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;
当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.
精英家教网
分析:根据已知可以利用SAS证明△ABE≌△CBF,从而得出对应角相等,对应边相等,从而得出∠ABE=∠CBF=30°,△BEF为等边三角形,利用等边三角形的性质及边与边之间的关系,即可推出AE+CF=EF.
同理图2可证明是成立的,图3不成立.
解答:精英家教网解:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,
在△ABE和△CBF中,
AB=BC
∠A=∠C=90°
AE=CF

∴△ABE≌△CBF(SAS);
∴∠ABE=∠CBF,BE=BF;
∵∠ABC=120°,∠MBN=60°,
∴∠ABE=∠CBF=30°,
∴AE=
1
2
BE,CF=
1
2
BF;
∵∠MBN=60°,BE=BF,
∴△BEF为等边三角形;
∴AE+CF=
1
2
BE+
1
2
BF=BE=EF;

图2成立,图3不成立.
证明图2.
延长DC至点K,使CK=AE,连接BK,
精英家教网在△BAE和△BCK中,
AB=CB
∠A=∠BCK=90°
AE=CK

则△BAE≌△BCK,
∴BE=BK,∠ABE=∠KBC,
∵∠FBE=60°,∠ABC=120°,
∴∠FBC+∠ABE=60°,
∴∠FBC+∠KBC=60°,
∴∠KBF=∠FBE=60°,
在△KBF和△EBF中,
BK=BE
∠KBF=∠EBF
BF=BF

∴△KBF≌△EBF,
∴KF=EF,
∴KC+CF=EF,
即AE+CF=EF.
图3不成立,
AE、CF、EF的关系是AE-CF=EF.
点评:本题主要考查全等三角形的判定方法,常用的方法有SSS,SAS,AAS等,这些方法要求学生能够掌握并灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网