题目内容
【题目】如图,在Rt△ABC中,∠B=90°,按如下步骤作图: ①分别以点B、C为圆心,大于 AB的长为半径作弧,两弧相交于点M和N;
②作直线MN交AC于点D,
③连接BD,
若AC=8,则BD的长为 .
【答案】4
【解析】解:由题意可得:MN是线段BC的垂直平分线, 则AB∥MN,
∵MN垂直平分线BC,
∴D是AC的中点,
∴BD是直角三角形ABC斜边上的中线,
故BD= AC=4.
所以答案是:4.
【考点精析】根据题目的已知条件,利用线段垂直平分线的性质和直角三角形斜边上的中线的相关知识可以得到问题的答案,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;直角三角形斜边上的中线等于斜边的一半.
练习册系列答案
相关题目