题目内容

【题目】如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).

(1)当点N落在边BC上时,求t的值.
(2)当点N到点A、B的距离相等时,求t的值.
(3)当点Q沿D→B运动时,求S与t之间的函数表达式.
(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF与四边形PQMN的面积比为2:3时t的值.

【答案】
(1)

解:∵△PQN与△ABC都是等边三角形,

∴当点N落在边BC上时,点Q与点B重合.

∴DQ=3

∴2t=3.

∴t=


(2)

解:∵当点N到点A、B的距离相等时,点N在边AB的中线上,

∴PD=DQ,

当0<t< 时,

此时,PD=t,DQ=2t

∴t=2t

∴t=0(不合题意,舍去),

≤t<3时,

此时,PD=t,DQ=6﹣2t

∴t=6﹣2t,

解得t=2;

综上所述,当点N到点A、B的距离相等时,t=2


(3)

解:由题意知:此时,PD=t,DQ=2t

当点M在BC边上时,

∴MN=BQ

∵PQ=MN=3t,BQ=3﹣2t

∴3t=3﹣2t

∴解得t=

如图①,当 时,

SPNQ= PQ2= t2

∴S=S菱形PQMN=2SPNQ= t2

如图②,当 时,

设MN、MQ与边BC的交点分别是E、F,

∵MN=PQ=3t,NE=BQ=3﹣2t,

∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,

∵△EMF是等边三角形,

∴SEMF= ME2= (5t﹣3)2


(4)

解:MN、MQ与边BC的交点分别是E、F,

此时, <t<

t=1或


【解析】(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当 时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当 时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时 <t< ,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.
【考点精析】关于本题考查的相似三角形的应用,需要了解测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网